
PyOpenWorm Documentation
Release alpha0.5

PyOpenWorm

June 20, 2015

Contents

1 PyOpenWorm API 3
1.1 Basic Classes . 3

2 For Users 15
2.1 Requirements for data storage in OpenWorm . 15
2.2 Adding Data to YOUR OpenWorm Database . 18
2.3 Making data objects . 19
2.4 Sharing Data with other users . 20

3 For Developers 23
3.1 Adding documentation . 23
3.2 RDF semantics for PyOpenWorm . 24
3.3 RDF structure for PyOpenWorm . 24
3.4 Population() . 25
3.5 NeuroML() . 25

4 Issues 27

5 Indices and tables 29

i

ii

PyOpenWorm Documentation, Release alpha0.5

Our main README is available online on Github. 1 This documentation contains additional materials beyond what
is covered there.

Contents:

1 http://github.com/openworm/PyOpenWorm

Contents 1

http://github.com/openworm/PyOpenWorm

PyOpenWorm Documentation, Release alpha0.5

2 Contents

CHAPTER 1

PyOpenWorm API

1.1 Basic Classes

1.1.1 Worm

class PyOpenWorm.Worm(scientific_name=False, **kwargs)
Bases: PyOpenWorm.dataObject.DataObject

A representation of the whole worm.

All worms with the same name are considered to be the same object.

Attributes

neuron_network (ObjectProperty) The neuron network of the worm
muscle (ObjectProperty) Muscles of the worm

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

get_neuron_network()
Return the neuron network of the worm.

Example:

Grabs the representation of the neuronal network
>>> net = P.Worm().get_neuron_network()

Grab a specific neuron
>>> aval = net.aneuron('AVAL')

>>> aval.type()
set([u'interneuron'])

#show how many connections go out of AVAL
>>> aval.connection.count('pre')
77

Returns An object to work with the network of the worm

Return type PyOpenWorm.Network

3

PyOpenWorm Documentation, Release alpha0.5

get_semantic_net()

Get the underlying semantic network as an RDFLib Graph

Returns A semantic network containing information about the worm

Return type rdflib.ConjunctiveGraph

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

muscles()
Get all Muscle objects attached to the Worm

Returns a set of all muscles:

Example:

>>> muscles = P.Worm().muscles()
>>> len(muscles)
96

Returns A set of all muscles

Return type set

retract()
Remove this object from the data store.

save()
Write in-memory data to the database. Derived classes should call this to update the store.

1.1.2 Network

class PyOpenWorm.Network(**kwargs)
Bases: PyOpenWorm.dataObject.DataObject

A network of neurons

Attributes

neuron Representation of neurons in the network
synapse Representation of synapses in the network

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

aneuron(name)
Get a neuron by name.

Example:

4 Chapter 1. PyOpenWorm API

PyOpenWorm Documentation, Release alpha0.5

Grabs the representation of the neuronal network
>>> net = P.Worm().get_neuron_network()

Grab a specific neuron
>>> aval = net.aneuron('AVAL')

>>> aval.type()
set([u'interneuron'])

Parameters name – Name of a c. elegans neuron

Returns Neuron corresponding to the name given

Return type PyOpenWorm.Neuron

as_networkx()

interneurons()
Get all interneurons

Returns A iterable of all interneurons

Return type iter(Neuron)

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

motor()
Get all motor

Returns A iterable of all motor neurons

Return type iter(Neuron)

neurons()
Gets the complete set of neurons in this network.

Example:

Grabs the representation of the neuronal network
>>> net = P.Worm().get_neuron_network()

#NOTE: This is a VERY slow operation right now
>>> len(set(net.neurons()))
302
>>> set(net.neurons())
set(['VB4', 'PDEL', 'HSNL', 'SIBDR', ... 'RIAL', 'MCR', 'LUAL'])

retract()
Remove this object from the data store.

save()
Write in-memory data to the database. Derived classes should call this to update the store.

sensory()
Get all sensory neurons

1.1. Basic Classes 5

PyOpenWorm Documentation, Release alpha0.5

Returns A iterable of all sensory neurons

Return type iter(Neuron)

1.1.3 Connection

class PyOpenWorm.Connection(pre_cell=None, post_cell=None, number=None, syntype=None, syn-
class=None, **kwargs)

Bases: PyOpenWorm.relationship.Relationship

Connection between neurons

Parameters pre_cell : string or Neuron, optional

The pre-synaptic cell

post_cell : string or Neuron, optional

The post-synaptic cell

number : int, optional

The weight of the connection

syntype : {‘gapJunction’, ‘send’}, optional

The kind of synaptic connection. ‘gapJunction’ indicates a gap junction and ‘send’ a
chemical synapse

synclass : string, optional

The kind of Neurotransmitter (if any) sent between pre_cell and post_cell

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

retract()
Remove this object from the data store.

save()
Write in-memory data to the database. Derived classes should call this to update the store.

1.1.4 Cell

class PyOpenWorm.Cell(name=False, lineageName=False, **kwargs)
Bases: PyOpenWorm.dataObject.DataObject

A biological cell.

All cells with the same name are considered to be the same object.

Parameters name : string

6 Chapter 1. PyOpenWorm API

PyOpenWorm Documentation, Release alpha0.5

The name of the cell

lineageName : string

The lineageName of the cell Example:

>>> c = Cell(name="ADAL")
>>> c.lineageName() # Returns ["AB plapaaaapp"]

Attributes

name (DatatypeProperty) The ‘adult’ name of the cell typically used by biologists when discussing C.
elegans

lineage-
Name

(DatatypeProperty) The lineageName of the cell

descrip-
tion

(DatatypeProperty) A description of the cell

division-
Volume

(DatatypeProperty) When called with no argument, return the volume of the cell at division
during development. When called with an argument, set the volume of the cell at division
Example:: >>> v = Quantity(“600”,”(um)^3”) >>> c = Cell(lineageName=”AB plapaaaap”)
>>> c.divisionVolume(v)

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

blast()
Return the blast name.

Example:

>>> c = Cell(name="ADAL")
>>> c.blast() # Returns "AB"

Note that this isn’t a Property. It returns the blast extracted from the ‘’first” lineageName saved.

daughterOf()
Return the parent(s) of the cell in terms of developmental lineage.

Example:

>>> c = Cell(lineageName="AB plapaaaap")
>>> c.daughterOf() # Returns [Cell(lineageName="AB plapaaaa")]

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

parentOf()
Return the direct daughters of the cell in terms of developmental lineage.

Example:

1.1. Basic Classes 7

PyOpenWorm Documentation, Release alpha0.5

>>> c = Cell(lineageName="AB plapaaaap")
>>> c.parentOf() # Returns [Cell(lineageName="AB plapaaaapp"),Cell(lineageName="AB plapaaaapa")]

retract()
Remove this object from the data store.

save()
Write in-memory data to the database. Derived classes should call this to update the store.

1.1.5 Neuron

class PyOpenWorm.Neuron(name=False, **kwargs)
Bases: PyOpenWorm.cell.Cell

A neuron.

See what neurons express some neuropeptide

Example:

Grabs the representation of the neuronal network
>>> net = P.Worm().get_neuron_network()

Grab a specific neuron
>>> aval = net.aneuron('AVAL')

>>> aval.type()
set([u'interneuron'])

#show how many connections go out of AVAL
>>> aval.connection.count('pre')
77

>>> aval.name()
u'AVAL'

#list all known receptors
>>> sorted(aval.receptors())
[u'GGR-3', u'GLR-1', u'GLR-2', u'GLR-4', u'GLR-5', u'NMR-1', u'NMR-2', u'UNC-8']

#show how many chemical synapses go in and out of AVAL
>>> aval.Syn_degree()
90

Parameters name : string

The name of the neuron.

8 Chapter 1. PyOpenWorm API

PyOpenWorm Documentation, Release alpha0.5

Attributes

type (DatatypeProperty) The neuron type (i.e., sensory, interneuron, motor)
receptor (DatatypeProperty) The receptor types associated with this neuron
innexin (DatatypeProperty) Innexin types associated with this neuron
neuro-
transmit-
ter

(DatatypeProperty) Neurotransmitters associated with this neuron

neuropep-
tide

(DatatypeProperty) Name of the gene corresponding to the neuropeptide produced by this
neuron

neighbor (Property) Get neurons connected to this neuron if called with no arguments, or with
arguments, state that neuronName is a neighbor of this Neuron

connec-
tion

(Property) Get a set of Connection objects describing chemical synapses or gap junctions
between this neuron and others

GJ_degree()
Get the degree of this neuron for gap junction edges only

Returns total number of incoming and outgoing gap junctions

Return type int

Syn_degree()
Get the degree of a this neuron for chemical synapse edges only

Returns total number of incoming and outgoing chemical synapses

Return type int

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

blast()
Return the blast name.

Example:

>>> c = Cell(name="ADAL")
>>> c.blast() # Returns "AB"

Note that this isn’t a Property. It returns the blast extracted from the ‘’first” lineageName saved.

daughterOf()
Return the parent(s) of the cell in terms of developmental lineage.

Example:

>>> c = Cell(lineageName="AB plapaaaap")
>>> c.daughterOf() # Returns [Cell(lineageName="AB plapaaaa")]

get_incidents(type=0)
Get neurons which synapse at this neuron

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

1.1. Basic Classes 9

PyOpenWorm Documentation, Release alpha0.5

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

parentOf()
Return the direct daughters of the cell in terms of developmental lineage.

Example:

>>> c = Cell(lineageName="AB plapaaaap")
>>> c.parentOf() # Returns [Cell(lineageName="AB plapaaaapp"),Cell(lineageName="AB plapaaaapa")]

retract()
Remove this object from the data store.

save()
Write in-memory data to the database. Derived classes should call this to update the store.

1.1.6 Muscle

class PyOpenWorm.Muscle(name=False, **kwargs)
Bases: PyOpenWorm.cell.Cell

A single muscle cell.

See what neurons innervate a muscle:

Example:

>>> mdr21 = P.Muscle('MDR21')
>>> innervates_mdr21 = mdr21.innervatedBy()
>>> len(innervates_mdr21)
4

Attributes

neu-
rons

(ObjectProperty) Neurons synapsing with this muscle

re-
cep-
tors

(DatatypeProperty) Get a list of receptors for this muscle if called with no arguments, or state that
this muscle has the given receptor type if called with an argument

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

blast()
Return the blast name.

Example:

>>> c = Cell(name="ADAL")
>>> c.blast() # Returns "AB"

Note that this isn’t a Property. It returns the blast extracted from the ‘’first” lineageName saved.

daughterOf()
Return the parent(s) of the cell in terms of developmental lineage.

Example:

10 Chapter 1. PyOpenWorm API

PyOpenWorm Documentation, Release alpha0.5

>>> c = Cell(lineageName="AB plapaaaap")
>>> c.daughterOf() # Returns [Cell(lineageName="AB plapaaaa")]

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

parentOf()
Return the direct daughters of the cell in terms of developmental lineage.

Example:

>>> c = Cell(lineageName="AB plapaaaap")
>>> c.parentOf() # Returns [Cell(lineageName="AB plapaaaapp"),Cell(lineageName="AB plapaaaapa")]

retract()
Remove this object from the data store.

save()
Write in-memory data to the database. Derived classes should call this to update the store.

1.1.7 Channel

class PyOpenWorm.Channel(subfamily=False, **kwargs)
Bases: PyOpenWorm.dataObject.DataObject

An ion channel.

Channels are identified by subtype name.

Parameters subfamily : string

The subfamily to which the ion channel belongs

Attributes

subfamily (DatatypeProperty) The subfamily to which the ion channel belongs
Models (Property) Get experimental models of this ion channel

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

retract()
Remove this object from the data store.

1.1. Basic Classes 11

PyOpenWorm Documentation, Release alpha0.5

save()
Write in-memory data to the database. Derived classes should call this to update the store.

1.1.8 Evidence

class PyOpenWorm.Evidence(conf=False, **source)
Bases: PyOpenWorm.dataObject.DataObject

A representation of some document which provides evidence like scholarly references, for other objects.

Possible keys include:

pmid,pubmed: a pubmed id or url (e.g., 24098140)
wbid,wormbase: a wormbase id or url (e.g., WBPaper00044287)
doi: a Digitial Object id or url (e.g., s00454-010-9273-0)

Parameters doi : string

A Digital Object Identifier (DOI) that provides evidence, optional

pmid : string

A PubMed ID (PMID) that point to a paper that provides evidence, optional

wormbaseid : string

An ID from WormBase that points to a record that provides evidence, optional

author : string

The author of the evidence

title : string

The title of the evidence

year : string or int

The date (e.g., publication date) of the evidence

uri : string

A URL that points to evidence

12 Chapter 1. PyOpenWorm API

PyOpenWorm Documentation, Release alpha0.5

Attributes

asserts (ObjectProperty (value_type=DataObject)) When used with an argument, state that this Evidence
asserts that the relationship is true. Example:: import bibtex bt = bibtex.parse(“my.bib”) n1 =
Neuron(“AVAL”) n2 = Neuron(“DA3”) c = Connection(pre=n1,post=n2,class=”synapse”) e =
Evidence(bibtex=bt[’white86’]) e.asserts(c) Other methods return objects which asserts accepts.
Example:: n1 = Neuron(“AVAL”) r = n1.neighbor(“DA3”) e = Evidence(bibtex=bt[’white86’])
e.asserts(r) When used without arguments, returns a sequence of statements asserted by this
evidence Example:: import bibtex bt = bibtex.parse(“my.bib”) n1 = Neuron(“AVAL”) n2 =
Neuron(“DA3”) c = Connection(pre=n1,post=n2,class=”synapse”) e =
Evidence(bibtex=bt[’white86’]) e.asserts(c) list(e.asserts()) # Returns a list [..., d, ...] such that
d==c

doi (DatatypeProperty) A Digital Object Identifier (DOI) that provides evidence, optional
pmid (DatatypeProperty) A PubMed ID (PMID) that point to a paper that provides evidence, optional
worm-
baseid

(DatatypeProperty) An ID from WormBase that points to a record that provides evidence, optional

author (DatatypeProperty) The author of the evidence
title (DatatypeProperty) The title of the evidence
year (DatatypeProperty) The date (e.g., publication date) of the evidence
uri (DatatypeProperty) A URL that points to evidence

add_data(k, v)
Add a field

Parameters k : string

Field name

v : string

Field value

add_reference(g, reference_iri)
Add a citation to a set of statements in the database

Parameters triples – A set of triples to annotate

load()
Load in data from the database. Derived classes should override this for their own data structures.

load() returns an iterable object which yields DataObjects which have the same class as the object and
have, for the Properties set, the same values

Parameters self – An object which limits the set of objects which can be returned. Should
have the configuration necessary to do the query

retract()
Remove this object from the data store.

save()
Write in-memory data to the database. Derived classes should call this to update the store.

1.1. Basic Classes 13

PyOpenWorm Documentation, Release alpha0.5

14 Chapter 1. PyOpenWorm API

CHAPTER 2

For Users

2.1 Requirements for data storage in OpenWorm

Our OpenWorm database captures facts about C. elegans. The database stores data for generating model files and
together with annotations describing the origins of the data. Below are a set of recommendations for implementation
of the database organized around an RDF model.

2.1.1 Interface

Access is through a Python library which communicates with the database. This library serves the function of pro-
viding an object oriented view on the database that can be accessed through the Python scripts commonly used in the
project. The draft api is described separately.

2.1.2 Data modelling

Biophysical and anatomical data are included in the database. A sketch of some features of the data model is below.
Also included in our model are the relationships between these types. Given our choice of data types, we do not model
the individual interactions between cells as entities in the database. Rather these are described by generic predicates
in an RDF triple. For instance, neuron A synapsing with muscle cell B would give a statement (A, synapsesWith, B),
but A synapsing with neuron C would also have (A, synapsesWith, C). Data which belong to the specific relationship
between two nodes is attached to an rdf:Statement object which points to the statement. This choice is intended to
easy querying and extension later on.

Nervous system

In the worm’s nervous system, we capture a few important data types (listed below). These correspond primarily to
the anatomical structures and chemicals which are necessary for the worm to record external and internal stimuli and
activate its body in response to those stimuli.

Data types

A non-exhaustive list of neurological data types in our C. elegans database:

• receptor types identified in the nerve cell

• neurons

• ion channels

15

http://stackoverflow.com/a/1122451
http://www.w3.org/TR/rdf-schema/#ch_statement

PyOpenWorm Documentation, Release alpha0.5

• neurotransmitters

• muscle receptors

Development

Caenorhabditis elegans has very stable cell division patterns in the absence of mutations. This means that we can
capture divisions in our database as static ‘daughter_of’ relationships. The theory of differentiation codes additionally
gives an algorithmic description to the growth patterns of the worm which describes signals transmitted between
developing cells. In order to test this theory we would like to leverage existing photographic data indicating the
volume of cells at the time of their division as this relates to the differentiation code stored by the cell. Progress on
this issue is documented on Github.

Aging

Concurrently with development, we would like to begin modeling the effects of aging on the worm. Aging typically
manifests in physiological changes due to transcription errors or cell death. These physiological changes can be
represented abstractly as parameters to the function of biological entities. See Github for further discussion.

2.1.3 Information assurance

Reasoning and Data integrity

To make full use of RDF storage it’s recommended to leverage reasoning over our stored data. Encoding rules for the
worm requires a good knowledge of both C. elegans and the database schema. More research needs to be done on this
going forward. Preliminarily, SPIN, a constraint notation system based on SPARQL looks like a good candidate for
specifying rules, but an inference engine for enforcing the rules still needs to be found.

Input validation

Input validation is to be handled through the interface library referenced above. In general, incorrect entry of biological
names will result in an error being reported identifying the offending entry and providing a acceptable entries where
appropriate. No direct access to the underlying data store will be provided.

Provenance

Tracking the origins of facts stated in the database demands a method of annotating statements in our database. Pro-
viding citations for facts must be as simple as providing a global identifier (e.g., URI, DOI) or a local identifier (e.g.,
Bibtex identifier, Pubmed ID). A technique called RDF reification allows us to annotate arbitrary facts in our database
with additional information. This technique allows for the addition of structured citation data to facts in the database
as well as annotations for tracking responsibility for uploads to the database. Further details for the attachment of
evidence using this technique are given in the draft api.

In line with current practices for communication through the source code management platform, Github, we would
like to track responsibility for new uploads to the database. Two methods are proposed for tracking this information:
RDF named graphs and RDF reification. Tracking information must include, at least, a time-stamp on the update
and linking of the submitted data to the uploader’s unique identifier (e.g., email address). Named graphs have the
advantage of wide support for the use of tracking uploads. The choice between these depends largely the support of
the chosen data store for named graphs.

16 Chapter 2. For Users

https://github.com/openworm/PyOpenWorm/issues/7#issuecomment-45401916
https://github.com/openworm/PyOpenWorm/issues/6

PyOpenWorm Documentation, Release alpha0.5

Access control

Write access to data in the project has been inconsistent between various data sources in the project. Going forward,
write access to OpenWorm databases should be restricted to authenticated users to forestall the possibility of malicious
tampering.

One way to accomplish this would be to leverage GitHub’s fork and pull model with the data as well as the code. This
would require two things:

• Instead of remote hosting of data, data is local to each copy of the library

within a local database - A serialization method dumps a new copy of the data out to a flat file enabling all users of the
library to contribute their modifications to the data back to the PyOpenWorm project via GitHub.

A follow on to #2 is that the serialization method would need to preserve the ordering of data elements and write in
some plain text format so that a simple diff on GitHub would be able to illuminate changes that were made.

2.1.4 Miscellaneous

Versioning

Experimental methods are constantly improving in biological research. These improvements may require updating the
data we reference or store internally. However, in making updates we must not immediately expunge older content,
breaking links created by internal and external agents. Ideally we would have a means of deprecating old data and
specifying replacements. On the level of single resources, this is a trivial mapping which may be done transparently to
all readers. For a more significant change, altering the schema, human intervention may be required to update external
readers.

2.1.5 Why RDF?

RDF offers advantages in resilience to schema additions and increased flexibility in integrating data from disparate
sources. 1 These qualities can be valued by comparison to relational database systems. Typically, schema changes in a
relational database require extensive work for applications using it. 2 In the author’s experience, RDF databases offer
more freedom in restructuring. Also, for data integration, SPARQL, the standard language for querying over RDF has
Federated queries which allow for nearly painless integration of external SPARQL endpoints with existing queries.

FuXi

FuXi is implemented as a semantic reasoning layer in PyOpenWorm. In other words, it will be used to automatically
infer (and set) properties from other properties in the worm database. This means that redundant information (ex:
explicitly stating that each object is of class “dataType”) and subclass relationships (ex: that every object of type
“Neuron” is also of type “Cell”), as well as other relationships, can be generated by the firing of FuXi’s rule engine,
without being hand-coded.

Aside from the time it saves in coding, FuXi may allow for a smaller footprint in the cloud, as many relationships
within the database could be inferred after download.

The advantage of local storage of the database that goes along with each copy of the library is that the data will have
the version number of the library. This means that data can be ‘deprecated’ along with a deprecated version of the
library. This also will prevent changes made to a volatile database that break downstream code that uses the library.

1 http://answers.semanticweb.com/questions/19183/advantages-of-rdf-over-relational-databases
2 http://research.microsoft.com/pubs/118211/andy%20maule%20-%20thesis.pdf

2.1. Requirements for data storage in OpenWorm 17

http://www.w3.org/TR/sparql11-federated-query/
https://github.com/RDFLib/FuXi
http://answers.semanticweb.com/questions/19183/advantages-of-rdf-over-relational-databases
http://research.microsoft.com/pubs/118211/andy%20maule%20-%20thesis.pdf

PyOpenWorm Documentation, Release alpha0.5

2.2 Adding Data to YOUR OpenWorm Database

So, you’ve got some biological data about the worm and you’d like to save it in PyOpenWorm, but you don’t know
how it’s done?

You’ve come to the right place!

A few biological entities (e.g., Cell, Neuron, Muscle, Worm) are pre-coded into PyOpenWorm. The full list is available
in the API. If these entities already cover your use-case, then all you need to do is add values for the appropriate fields
and save them. If you have data already loaded into your database, then you can load objects from it:

n = Neuron()
n.receptor('UNC-13')
for x in n.load():

do_something_with_unc13_neuron(n)

If you need additional entities it’s easy to create them. Documentation for this is provided here.

Typically, you’ll want to attach the data that you insert to entities already in the database. This allows you to recover
objects in a hierarchical fashion from the database later. Worm, for instance has a property, neuron_network,
which points to the Networkwhich should contain all neural cells and synaptic connections. To initialize the hiearchy
you would do something like:

w = Worm('C. briggsae') # The name is optional and currently defaults to 'C. elegans'
nn = Network() # make a neuron network
w.neuron_network(nn) # attach to the worm the neuron network
n = Neuron() # make an unnamed neuron
n.receptor('UNC-13') # state that the neuron has a UNC-13 type receptor
nn.neuron(n) # attach to the neuron network
w.save() # save all of the data attached to the worm

It is possible to create objects without attaching them to anything and they can still be referenced by calling load on
an instance of the object’s class as in n.load() above. This also points out another fact: you don’t have to set up
the hierarchy for each insert in order for the objects to be linked to existing entities. If you have previously set up
connections to an entity (e.g., Worm(’C. briggsae’)), assuming you only have one such entity, you can refer
to things attached to it without respecifying the hierarchy for each script. The database packaged with PyOpenWorm
should have only one Worm and one Network.

Remember that once you’ve set up all of the data, you must save the objects. For now, this requires keeping track
of top-level objects – objects which aren’t values of some other property – and calling save() on each of them
individually. This isn’t too difficult to achieve.

Future capabilities:

• Adding propositional logic to support making statements about all entities

matching some conditions without needing to load() and save() them from the database. * Statements like:

w = Worm()
w.neuron_network.neuron.receptor('UNC-13')
l = list(w.load()) # Get a list of worms with neurons expressing 'UNC-13'

currently, to do the equivalent, you must work backwards, finding all neurons
with UNC-13 receptors, then getting all networks with those neurons, then
getting all worms with those networks::

worms = set()
n = Neuron()
n.receptor('UNC-13')
for ns in n.load():

18 Chapter 2. For Users

PyOpenWorm Documentation, Release alpha0.5

nn = Network()
nn.neuron(ns)
for z in nn.load():

w = Worm()
w.neuron_network(z)
worms.add(w)

l = list(worms)

It's not difficult logic, but it's 8 extra lines of code for a conceptually
very simple query.

• Also, queries like:

l = list(Worm('C. briggsae').neuron_network.neuron.receptor()) # get a list
#of all receptors expressed in neurons of C. briggsae

Again, not difficult to write out, but in this case it actually gives a much longer query time because additional
values are queried in a load() call that are never returned.

We’d also like operators for composing many such strings so:

Worm('C. briggsae').neuron_network.neuron.get('receptor', 'innexin') # list
#of (receptor, innexin) values for each neuron

would be possible with one query and thus not requiring parsing and iterating over neurons twice–it’s all done
in a single, simple query.

2.3 Making data objects

To make new objects like Neuron or Worm, for the most part, you just need to make a Python class. Say, for example,
that I want to record some information about drug reactions in C. elegans. I make Drug and Experiment classes to
describe C. elegans reactions:

from PyOpenWorm import (DataObject,
DatatypeProperty,
ObjectProperty,
Worm,
Evidence,
connect)

class Drug(DataObject):
We set up properties in __init__
def __init__(self,drug_name=False,*args,**kwargs):

pass arguments to DataObject
DataObject.__init__(self,*args,**kwargs)
Drug.DatatypeProperty('name', owner=self)
if drug_name:

self.name(drug_name)

class Experiment(DataObject):
def __init__(self,*args,**kwargs):

pass arguments to DataObject
DataObject.__init__(self,*args,**kwargs)
Experiment.ObjectProperty('drug', value_type=Drug, owner=self)
Experiment.ObjectProperty('subject', value_type=Worm, owner=self)
Experiment.DatatypeProperty('route_of_entry', owner=self)
Experiment.DatatypeProperty('reaction', owner=self)

2.3. Making data objects 19

PyOpenWorm Documentation, Release alpha0.5

connect()
Set up with the RDF translation machinery
Experiment.register()
Drug.register()

I can then make a Drug object for moon rocks and describe an experiment by Aperture Labs:

d = Drug('moon rocks')
e = Experiment()
w = Worm("C. elegans")
ev = Evidence(author="Aperture Labs")
e.subject(w)
e.drug(d)
e.route_of_entry('ingestion')
e.reaction('no reaction')
ev.asserts(e)

and save it:

ev.save()

For simple objects, this is all we have to do.

You can also add properties to an object after it has been created by calling either ObjectProperty or DatatypeProperty
on the object as is done in __init__:

d = Drug('moon rocks')
Drug.DatatypeProperty('granularity', owner=self)
d.granularity('ground up')

Properties added in this fashion will not propagate to any other objects, but they will be saved along with the object
they are attached to.

2.4 Sharing Data with other users

Sharing is key to PyOpenWorm. This document covers the appropriate way to share changes with other PyOpenWorm
users.

The shared PyOpenWorm database is stored in a Git repository distinct from the PyOpenWorm source code. Currently
the database is stored in a Github repository here .

When you create a database normally, it will be stored in a format which is opaque to humans. In order to share your
database you have two options: You can share the scripts which are used to create your database or you can share
a human-readable serialization of the database. The second option is better since it doesn’t require re-running your
script to use the generated data, but it is best to share both.

For sharing the serialization, you should first clone the repository linked above, read the current serialization into your
database (see below for an example of how you would do this), and then write out the serialization:

import PyOpenWorm as P
P.connect('path/to/your/config/file')
P.config()['rdf.graph'].serialize('out.n3', format='n3')
P.disconnect()

Commit, your changes to the git repository, push to a fork of the repository on Github and submit a pull request on the
main repository. If for some reason your are unwilling or unable to create a Github account, post to the OpenWorm-
discuss mailing list with a patch on the main repository with your changes and someone will have a look, possibly ask
for adjustments or justification for your addition, and ultimately merge the changes for you.

20 Chapter 2. For Users

https://github.com/mwatts15/OpenWormData
http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/using-pull-requests
https://groups.google.com/forum/#!forum/openworm-discuss
https://groups.google.com/forum/#!forum/openworm-discuss

PyOpenWorm Documentation, Release alpha0.5

To read the database back in you would do something like:

import PyOpenWorm as P
P.connect('path/to/your/config/file')
P.config()['rdf.graph'].parse('out.n3', format='n3')
P.disconnect()

Scripts are also added to the repository on Github to the scripts subdirectory.

2.4. Sharing Data with other users 21

PyOpenWorm Documentation, Release alpha0.5

22 Chapter 2. For Users

CHAPTER 3

For Developers

3.1 Adding documentation

Documentation for PyOpenWorm is housed in two locations:

1. In the top-level project directory as INSTALL.md and README.md.

2. As a Sphinx project under the docs directory

To add a page about useful facts concerning C. elegans to the documentation, include an entry in the list under
toctree in docs/index.rst like:

worm-facts

and create the file worm-facts.rst under the docs directory and add a line:

.. _worm-facts:

to the top of your file, remembering to leave an empty line before adding all of your wonderful worm facts.

You can get a preview of what your documentation will look like when it is published by running sphinx-build
on the docs directory:

sphinx-build -w sphinx-errors docs build_destination

The docs will be compiled to html which you can view by pointing your web browser at
build_destination/index.html. If you want to view the documentation locally with the ReadThe-
Docs theme you’ll need to download and install it.

3.1.1 API Documentation

API documentation is generated by the Sphinx autodoc extension. The format should be easy to pick up on, but
a reference is available here. Just add a docstring to your function/class/method and add an automodule line to
PyOpenWorm/__init__.py and your class should appear among the other documented classes.

3.1.2 Substitutions

Project-wide substitutions can be (conservatively!) added to allow for easily changing a value over all of the doc-
umentation. Currently defined substitutions can be found in conf.py in the rst_epilog setting. More about
substitutions

23

http://sphinx-doc.org/
https://github.com/snide/sphinx_rtd_theme
https://github.com/snide/sphinx_rtd_theme
http://sphinx-doc.org/ext/autodoc.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions

PyOpenWorm Documentation, Release alpha0.5

3.1.3 Conventions

If you’d like to add a convention, list it here and start using it.

Currently there are no real conventions to follow for documentation style, but additions to the docs will be subject to
style and content review by project maintainers.

3.2 RDF semantics for PyOpenWorm

In the context of PyOpenWorm, biological objects are classes of, for instance, anatomical features of a worm. That is
to say, statements made about C. elegans are not about a specific worm, but are stated about the entire class of worms.
The semantics of a property SimpleProperty/value value triple are that if any value is set, then without
any additional statements being made, an instance of the object has been observed to have the value at some point in
time, somewhere, under some set of conditions. In other words, the statement is an existential quantification over the
associated object(class).

The purpose of the identifiers for Properties is to allow statements to be made about them directly. An example:

<http://openworm.org/entities/Entity/1> <http://openworm.org/entities/Entity/interactsWith> <http://openworm.org/entities/Entity_interactsWith/2> .
<http://openworm.org/entities/Entity_interactsWith/2> <http://openworm.org/entities/SimpleProperty/value> <http://openworm.org/entities/Entity/3> .

<http://openworm.org/entities/Entity/4> <http://openworm.org/entities/Entity/modulates> <http://openworm.org/entities/Entity_modulates/5> .
<http://openworm.org/entities/Entity_modulates/5> <http://openworm.org/entities/SimpleProperty/value> <http://openworm.org/entities/Entity_interactsWith/2>

3.3 RDF structure for PyOpenWorm

For most use cases, it is (hopefully) not necessary to write custom queries over the RDF graph in order to work with
PyOpenWorm. However, if it does become necessary, it will be helpful to have an understanding of the structure of
the RDF graph. Thus, a summary is given below.

For all DataObjects which are not Properties, there is an identifier of the form

<http://openworm.org/entities/Object_type/md5sum>

stored in the graph. This identifier will be associated with type data:

<http://openworm.org/entities/Object_type/md5sum> rdf:type <http://openworm.org/entities/Object_type> .
<http://openworm.org/entities/Object_type/md5sum> rdf:type <http://openworm.org/entities/parent_of_Object_type> .
<http://openworm.org/entities/Object_type/md5sum> rdf:type <http://openworm.org/entities/parent_of_parent_of_Object_type> .
...

Properties have a slightly different form. They also have an identifier, which for SimpleProperties will look like
this:

<http://openworm.org/entities/OwnerType_propertyName/md5sum>

OwnerType is the type of the Property’s owner and propertyName is the name by which the property is accessed
from an object of the owner’s type. Other Properties will not necessarily have this form, but all of the standard
Properties are implemented in terms of SimpleProperties and have no direct representation in the graph. For other
Properties it is necessary to refer to their documentation or to examine the triples released by the Property of interest.

A DataObject’s identifier is connected to a property in a triple like:

<http://openworm.org/entities/OwnerType/md5sum> <http://openworm.org/entities/OwnerType/propertyName> <http://openworm.org/entities/OwnerType_propertyName/md5sum>

24 Chapter 3. For Developers

PyOpenWorm Documentation, Release alpha0.5

and the property is connected to its values like:

<http://openworm.org/entities/OwnerType_propertyName/md5sum> <http://openworm.org/entities/SimpleProperty/value> "A literal value"

The following API calls do not yet exist, but would be excellent next functions to implement

3.4 Population()

A collection of cells. Constructor creates an empty population.

3.4.1 Population.filterCells(filters : ListOf(PairOf(unboundMethod, methodArgu-
ment))) : Population

Allows for groups of cells to be created based on shared properties including neurotransmitter, anatomical location or
region, cell type.

Example:

p = Worm.cells()
p1 = p.filterCells([(Cell.lineageName, "AB")]) # A population of cells with AB as the blast cell

3.5 NeuroML()

A utility for generating NeuroML files from other objects. The semantics described above do not apply here.

3.5.1 NeuroML.generate(object : {Network, Neuron, IonChannel}, type : {0,1,2}) :
neuroml.NeuroMLDocument

Get a NeuroML object that represents the given object. The type determines what content is included in the NeuroML
object:

• 0=full morphology+biophysics

• 1=cell body only+biophysics

• 2=full morphology only

3.5.2 NeuroML.write(document : neuroml.NeuroMLDocument, filename : String)

Write out a NeuroMLDocument

3.4. Population() 25

PyOpenWorm Documentation, Release alpha0.5

26 Chapter 3. For Developers

CHAPTER 4

Issues

27

PyOpenWorm Documentation, Release alpha0.5

28 Chapter 4. Issues

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

29

PyOpenWorm Documentation, Release alpha0.5

30 Chapter 5. Indices and tables

Index

A
add_data() (PyOpenWorm.Evidence method), 13
add_reference() (PyOpenWorm.Cell method), 7
add_reference() (PyOpenWorm.Channel method), 11
add_reference() (PyOpenWorm.Connection method), 6
add_reference() (PyOpenWorm.Evidence method), 13
add_reference() (PyOpenWorm.Muscle method), 10
add_reference() (PyOpenWorm.Network method), 4
add_reference() (PyOpenWorm.Neuron method), 9
add_reference() (PyOpenWorm.Worm method), 3
aneuron() (PyOpenWorm.Network method), 4
as_networkx() (PyOpenWorm.Network method), 5

B
blast() (PyOpenWorm.Cell method), 7
blast() (PyOpenWorm.Muscle method), 10
blast() (PyOpenWorm.Neuron method), 9

C
Cell (class in PyOpenWorm), 6
Channel (class in PyOpenWorm), 11
Connection (class in PyOpenWorm), 6

D
daughterOf() (PyOpenWorm.Cell method), 7
daughterOf() (PyOpenWorm.Muscle method), 10
daughterOf() (PyOpenWorm.Neuron method), 9

E
Evidence (class in PyOpenWorm), 12

G
get_incidents() (PyOpenWorm.Neuron method), 9
get_neuron_network() (PyOpenWorm.Worm method), 3
get_semantic_net() (PyOpenWorm.Worm method), 4
GJ_degree() (PyOpenWorm.Neuron method), 9

I
interneurons() (PyOpenWorm.Network method), 5

L
load() (PyOpenWorm.Cell method), 7
load() (PyOpenWorm.Channel method), 11
load() (PyOpenWorm.Connection method), 6
load() (PyOpenWorm.Evidence method), 13
load() (PyOpenWorm.Muscle method), 11
load() (PyOpenWorm.Network method), 5
load() (PyOpenWorm.Neuron method), 9
load() (PyOpenWorm.Worm method), 4

M
motor() (PyOpenWorm.Network method), 5
Muscle (class in PyOpenWorm), 10
muscles() (PyOpenWorm.Worm method), 4

N
Network (class in PyOpenWorm), 4
Neuron (class in PyOpenWorm), 8
neurons() (PyOpenWorm.Network method), 5

P
parentOf() (PyOpenWorm.Cell method), 7
parentOf() (PyOpenWorm.Muscle method), 11
parentOf() (PyOpenWorm.Neuron method), 10

R
retract() (PyOpenWorm.Cell method), 8
retract() (PyOpenWorm.Channel method), 11
retract() (PyOpenWorm.Connection method), 6
retract() (PyOpenWorm.Evidence method), 13
retract() (PyOpenWorm.Muscle method), 11
retract() (PyOpenWorm.Network method), 5
retract() (PyOpenWorm.Neuron method), 10
retract() (PyOpenWorm.Worm method), 4

S
save() (PyOpenWorm.Cell method), 8
save() (PyOpenWorm.Channel method), 11
save() (PyOpenWorm.Connection method), 6
save() (PyOpenWorm.Evidence method), 13

31

PyOpenWorm Documentation, Release alpha0.5

save() (PyOpenWorm.Muscle method), 11
save() (PyOpenWorm.Network method), 5
save() (PyOpenWorm.Neuron method), 10
save() (PyOpenWorm.Worm method), 4
sensory() (PyOpenWorm.Network method), 5
Syn_degree() (PyOpenWorm.Neuron method), 9

W
Worm (class in PyOpenWorm), 3

32 Index

	PyOpenWorm API
	Basic Classes

	For Users
	Requirements for data storage in OpenWorm
	Adding Data to YOUR OpenWorm Database
	Making data objects
	Sharing Data with other users

	For Developers
	Adding documentation
	RDF semantics for PyOpenWorm
	RDF structure for PyOpenWorm
	Population()
	NeuroML()

	Issues
	Indices and tables

